
Newton-Raphson Integer Division for
Area-Constrained Microcontrollers

Nima Badizadegan
T0 Labs

Email: nima@t0labs.com

Abstract—Many small microcontrollers today are equipped
with single-cycle multipliers, but use division algorithms that
compute only one bit at a time, resulting in division operations
with up to 32 (or more) CPU cycles of latency, stalling the core
during computing. This is primarily due to area constraints, since
fast division algorithms based on iterative approximation require
relatively large lookup tables to produce a useful speedup over
slower algorithms.

We propose an alternative to using lookup tables for the initial
approximation. Instead, we augment the single-cycle multiplier to
compute a heavily-quantized polynomial approximation of 1/D.
The resulting approximation has 8-bit precision and computes in
a single cycle at a cost of 400 added logic gates.

Finally, we demonstrate a state machine that performs 32-bit
integer division using the augmented multiplier and a microcon-
troller ALU to compute quotient and remainder with 3–11-cycle
latency. When synthesized in a MAX 10 FPGA, the datapath with
fast division used 3,260 logic elements, compared to 2,759 LEs
for a microcontroller datapath without division, an area increase
of only 18%, or 4x less than the area of a single-cycle multiplier.

I. INTRODUCTION

Many small microcontroller cores operate under tight area
and power constraints, which make large arithmetic circuits
infeasible to use. However, even when cores are too small
for a floating-point unit, many of these cores still offer a
full suite of multiplication and integer division instructions,
particularly those compliant with the RISC-V M instruction
extensions [1]. These microcontrollers often use a single-cycle
multiplier, but only a radix-2 division unit [2], [3]. As a result,
while multiplication on these cores is fast, division instructions
can stall the core for 32 cycles or more.

In contrast, larger CPUs for real-time control and appli-
cation processing often use either high-radix digit-recurrence
algorithms [4] or iterative approximation algorithms to com-
pute division results [5], [6]. These algorithms permit division
operations to have latency and reciprocal throughput of less
than 10 clock cycles [7]. However, iterative approximation
algorithms usually use large lookup tables to produce initial
reciprocal estimates [8], which limits the applicability of these
methods to area-constrained systems.

Thus, research on division for area-constrained systems
has focused on enhancements to restoring and non-restoring
division algorithms to improve the speed of these methods,
including reducing circuit delay [9], adding fast early termi-
nation [10], and enhancing microcontrollers with approximate

division instructions that can be used to reduce division latency
where appropriate [11].

Finally, most of the literature on division circuits is focused
on floating-point division, which is fundamentally different
than integer division. Floating-point division produces a sin-
gle rounded result, while integer division has two results:
a quotient which is always rounded toward zero, and a re-
mainder [12]. For many integer division operations, including
those used for modular arithmetic and divisibility checks, the
remainder is the only operation used [13].

We propose to approach the problem of small, fast division
units from the other direction: by packing the circuits needed
for fast division algorithms using iterative approximation algo-
rithms into the existing functional units in a microcontroller.
Newton-Raphson division is computed in two stages: an initial
approximation, usually done using lookup tables, and sub-
sequent iteration rounds that provide quadratic convergence,
done with FMA circuits [14]. In this implementation, we
perform initial approximation using a quantized polynomial
approximation instead of a lookup table, and combine the
circuit for this approximation with the multiplier. Refinement
rounds are then run using a state machine, implemented in
microcode, and an integer FMA unit. To avoid widening
the datapath, we add a finalization step to the computation,
allowing an inexact result after the end of the Newton-Raphson
iterations. This finalization step corrects the remainder first,
and then the quotient if needed.

The remainder of the paper is organized as follows. Sec-
tion II shows a derivation of a quantized polynomial approx-
imation of 1/D that we will integrate into the multiplier
to replace a lookup table. In Section III, we describe a
circuit that combines a single-cycle multiplier with a division
estimation circuit. A description of a full state machine for
Newton-Raphson division using our combined multiplication
and division estimation circuit is provided in Section IV,
including early termination. Section V presents an evaluation
of area and maximum frequency of the division estimation
circuit and the division state machine in an FPGA model.
Finally, the main conclusions are presented in Section VI.

II. AREA-CONSTRAINED POLYNOMIAL APPROXIMATION

Polynomial approximation algorithms typically produce ap-
proximations that minimize error [15]. However, for division,
we do not need to minimize error, but bound it by a target,



et. With a quadratic convergence algorithm, an initial approx-
imation with 8-bit precision converges as quickly to a 32-bit
result as an initial approximation with 15-bit precision [14].
Thus, between an optimal polynomial approximation from the
Remez or Chebyshev algorithm and a minimally-satisfactory
polynomial with error e < et, we have an error budget to
spend on making the approximation easier to compute.

Methods such as bit heaps allow efficient computation of
known polynomial approximations [16]. However, we would
prefer to use an approximation that is smaller and more non-
optimal, but still with error less than et, such that the final
circuit can re-use the structure of an integer multiplier.

We start from an equation form that reduces the number of
required multiplications and can be computed with narrow bit
widths. For example, a 6th order polynomial in expanded form
takes the equivalent of 5 multiplications to produce powers
of x, as well as several full-width additions. However, in a
factored form like,

P (x) = ξ0(ξ1 + ξ2x+ x2)(ξ3 + ξ4x+ x2)(ξ5 + ξ6x+ x2)

we can compute P (x) using 3 non-constant multiplications.
Additionally, constant coefficients of x and the individual
quadratic sub-expressions can be heavily quantized. Each
polynomial coefficient in the expanded form is the product of
multiple ξi, so the loss from quantization is less severe than
in an expanded form. Additionally, the fixed-point products of
the sub-expressions are largely determined only by the high-
order bits of each expression, resulting in less quantization
loss than an expanded equation form.

A. Finding an Easy-to-Compute Polynomial for 1/D

A fourth-order Remez approximation for 1/D with D ∈
(0.5, 1) yields

R1/D(x) = 5.17028(1.96866− 2.6834x+ x2) (1)

×(0.703212− 1.02432x+ x2)

To reduce this expression to a computable form, we first
quantize coefficients and then quantize sub-expressions while
computing optimal constants for each sub-expression. Finding
sets of quantized coefficients can be done entirely before
quantizing product terms, but quantizations of each kn are
not independent due to the multiplication of the two factors.
Candidate coefficient sets for 8-bit division with this form of
polynomial can be found in Table I. The best approximation
is:

A1/D(x) = 5(c1 − 2.6875x+ x2)(c2 − 1.03125x+ x2) (2)

Given a set of quantized coefficients, we choose widths of
each multiplication while setting c1 and c2 to minimize error.
The terms that can be quantized are the input to the x2

calculation, the two factors inside the parentheses, and the
final multiplication. This can be done by brute force, using
minimax for c1 and c2 at each trial, or using a SAT or LP
solver.

With A1/D from equation 2, the following quantization was
selected:

TABLE I
CANDIDATE QUANTIZATIONS OF COEFFICIENTS OF EQUATION 1

Coefficients (Decimal and Binary)
k1 k2 k3 Accuracy (Bits)

5.17028 −2.6834 −1.02432 11.2

5 −2.6875 −1.03125
10.2

101 -10.1011 -1.00001

4 −2.6875 −1.03125
8.8

100 -10.1011 -1.00001

5 −2.75 −1.03125
8.5

101 -10.11 -1.00001

5 −2.6875 −1
8.2

101 -10.1011 -1

TABLE II
COMPUTED CONSTANTS FOR EQUATION 2 IN DECIMAL AND FIXED POINT

Constants Accuracy Bounds
c1 c2 min

(
A1/D(x)x

)
max

(
A1/D(x)x

)
Most Accurate
1.97968 0.71753 0.99814 1.00178

0x7eb3 0xb7b 0xff85d1cc 0x10074af66

Underestimate
1.97925 0.71729 0.99664 0.99996

0x7eac 0xb7a 0xff2413c5 0xfffd77a1

Overestimate
1.97979 0.71777 1.00006 1.00369

0x7eb5 0xb7c 0x10003dbb7 0x100f1b092

• Compute x2 with 13-bit input width
• Compute p1 = (c1−2.6875x+x2) with 14-bit precision
• Compute p2 = (c2−1.03125x+x2) with 12-bit precision
• Multiply p1 and p2 at full precision (12b × 14b)

The resulting circuit achieves an accuracy level of slightly
more than 8 bits, compared to 10.2 bits unquantized, but is
minimally-sized, taking less than 10 narrow additions and 2
small multiplications to fully compute. The constants found
for this approximation are shown in Table II, for precise
estimation, overestimation, and underestimation.

III. AUGMENTED MULTIPLIER CIRCUIT ARCHITECTURE

Our implementation starts with a 32-bit full multiplier using
Booth encoding, and multiplexes the array of adder trees to
compute sums and products for the chosen polynomial. Other
multiplier topologies, including array multipliers, can also
serve as a host for our division approximation. For signed and
unsigned multiplication, the Booth code multiplier computes
the sum of 17 partial products, which are summed using adder
trees to produce a 64-bit product.

The same array of adder trees is used to compute the
polynomial for division estimation. The mapping of division
approximation terms onto existing multiplier partial products
is shown in Figure 1. The two multiplications, computing
x2 and 5p1p2, make use of the Booth encoding circuits
for the respective rows that contain their partial products,
while the additions that compute p1 and p2 bypass the Booth



x2

p1

p2

5p1p2

Fig. 1. Dot diagram showing mapping of the division approximation polyno-
mial onto existing multiplier partial products (grey dots), and added nonzero
terms (black).

encoders and multiplex directly into the columns of adder
trees. The computation of p1 and p2 adds 6 nonzero bits to the
multiplier array, but all other computations fit entirely inside
the multiplier. With an array multiplier, all of the computations
would fit.

To facilitate the multiplier array cuts required for the
addition of the division approximation, the summation trees
used for each column are shown in Figure 2. The trees are not
simple Wallace trees: we use a mix of 3:2 and 4:2 compressors
to allow the trees to be split at the 7th and 10th partial products
to cover each of the distinct computations happening in the
array.

The top 7 partial products are used to both compute
(c1 − 2.6875x) and x2. The low-order bits of x2 are summed
using an adder circuit to produce a carry signal that is passed
to the computations of p1 and p2. The computation of p1
is finished using the first multiplexer, which brings x2 from
columns 12–25 over to columns 26–39, the following 4:2
compressor, and an adder. Once p1 is computed, it feeds into
the partial product generation circuits for the bottom seven
partial products. Computation of p2 uses the normal paths
through the multiplier, summing x2 as computed by the top
7 partial products and the linear and constant terms of p2
in the next 3 partial products. After all 10 components are
compressed to two, the final sum is taken before p2 is passed
to the booth encoders for the bottom 7 partial products.

For computation of the final product, 5p1p2, the bottom
7 partial products operate as normal, Booth-encoding p2 and
generating partial products from p1. After being summed from
7 partial products to 2, a multiplexer and a 2-bit shift are used
to synthetically multiply by 5. The same adder that computes
the final sum for 32-bit multiplication is used as the final adder
for division estimation.

The division estimation path is longer than the multiplica-
tion path, involving an extra round of Booth encoding and
an extra addition, but operations are significantly narrower.
However, since these operations share circuit nodes with multi-
plication, static timing analysis tools are likely to significantly
overestimate the length of the new critical path. For example,
the ×5 multiplexer cuts off the slower part of the adder tree
in the final calculation of 5p1p2, but static timing tools cannot
take advantage of this knowledge when estimating circuit
delay.

+4:2

4:2

4:2

4:2

3:2

4:2

3:2

3:2

4:2

x2{

≪2

+

+

Bits 20-46

Bits 26-39

Bits 14-39

Bits 0-13
x2 carry

p1 and p2

Fig. 2. Circuit diagram of compressor trees used for columns of the MUL/DIV
circuit, showing added hardware in red for 1/D approximation present on
some bits.

TABLE III
COMPARISON WITH COMMON MULTIPLIER TREES

Column Size Critical Path
Architecture Adder Cells Adder Cells Layers
Array Multiplier 15 15 15
Wallace Tree 15 6 6
4:2 Compressor Tree 15 7 5
This Work 15 8 5

A. Analysis of Circuit Size Expansion

A comparison to common multiplier tree circuits is shown
in Figure 3 and Table III. Assuming a naive 4:2 compressor
implementation that uses two chained full adder cells, the
summation tree used is not optimal, needing 8 full adder cells
on the critical path from one input to the output, instead of
6 for the optimal Wallace tree multiplier. However, with an
optimized 4:2 compressor, we use the same number of logic
layers as a 4:2 compressor tree. All column implementations
use the same number of adder cells, and likely a similar area
when optimized.

An estimate of the extra gate count required for division
estimation is shown in Table IV. Cuts in the carry path show up
as AND gates on the carries between columns, and cuts on the
sum path are multiplexers within the summation trees on each
column. The finalization of p1 and p2, including the production
of the low carry bits of x2, also needs extra adders. This results
in an additional 40 bits of binary addition. Multiplexing within
the adder trees adds an extra 92 multiplexers to the partial
product array and adder tree. Multiplexing sum terms for p1
and p2 to construct the linear terms adds an extra bit to 106
existing multiplexers, and adding an extra input to the booth
encoders and partial product generation circuits results in 70
multiplexers on the partial product generation path. The end
result is a theoretical expansion of the multiplier by under 400
gates.



(a) (b)

(c) (d)

Fig. 3. Comparison of this multiplier architecture against common multiplier
trees. (a) Array multiplier. (b) 3:2 compressor Wallace tree. (c) 4:2 compressor
tree. (d) This work.

TABLE IV
ESTIMATION OF CIRCUIT ELEMENTS ADDED FOR DIVISION

APPROXIMATION

Count Circuit Element

Generation of x2

Multiplexers for booth encoders 14 2:1 MUX
Multiplexers for partial products 26 2:1 MUX
Computation of carry inputs to p1 and p2 14 Adder Cell

Generation of p1 and p2
New nonzero bits in the multiplier array 6 Adder cell
Carry chain breaks 10 AND gate
Multiplexers for adding x2 to p1 28 2:1 MUX
Multiplexers to override partial products 106 2:1 MUX
Final computation adders 26 Adder Cell

Final product computation
Multiplexers for booth encoders 13 2:1 MUX
Multiplexers for partial products 24 2:1 MUX
Multiplexers for multiplication by 5 32 2:1 MUX

Output
Output MUX port for 1/x 32 2:1 MUX
Total Added Circuit Elements: 275 2:1 MUXes

46 Adder Cells
10 AND Gates

B. Approximating in Two Cycles

In systems where the multiplier takes multiple cycles or
where CPU frequency is critical, the division approximation
step can be split into two cycles by computing p1 and p2 in
the first cycle, and then 5p1p2 in the second cycle. A diagram
of this circuit is shown in Figure 4. We move both halves of
the division approximation to the top of the multiplier tree,
and expand one of the multiplexers from the one-cycle variant
to perform the function of both multiplexers.

This circuit moves the output port for division results to
the section of the multiplier tree covering only the first 10
partial products, leaving the bottom part of the tree untouched.
The output of the first cycle is a single word containing the

0, x2{
≪2

+4:2

4:2

4:2

4:2

3:2

4:2

3:2

3:2

4:2
+ DIVs

Fig. 4. Circuit diagram of the two-cycle MUL/DIV circuit. Added circuits
for division, shown in red, are on bits 0–39, and compute p1 and p2 in one
cycle, and 5p1p2 in the next.

concatenation of p1 and p2, and the second cycle produces
the final approximation. The adders used originally for the
carry from the x2 calculation and the calculations of p1 and
p2 are combined such that they can also be used as the final
CPA for the calculation of 5p1p2. Despite the movement of
the adders, multiplexing zeros into the calculation leaves the
results unchanged.

As a result, rather than adding 41 2:1 multiplexers to the
adder tree, a total of 40 3:1 multiplexers are added, one in
each of the bottom 40 bits of the multiplier. The added sum
terms shown in Figure 1 are still present. Unlike in the one-
cycle case, only the top 10 partial products and the top 7
Booth encoding circuits will need to have multiplexed inputs,
although all of those multiplexers are widened from 2:1 to
3:1. The overall circuit size will be similar to the one-cycle
division case, generally using fewer, wider multiplexers, and
the same number of other extra gates.

With such a circuit, division will take an extra clock cycle,
but the increase in operating frequency should more than make
up for the added latency in cores used for CPU-intensive
applications. This circuit also avoids re-entering the Booth
encoding circuits on the multiplier array, so pessimism on
static timing analysis is minimized.

IV. DIVISION STATE MACHINE

To examine the full cost of hardware for fast division using
this circuit, we designed a state machine that runs Newton-
Raphson division using the augmented multiplier and common
components of microcontroller ALUs. The state machine is
intended to be integrated into the decode and execute stages
of a microcontroller, but the standalone state machine allows
us to check the correctness of the algorithm and understand
the area cost.

The division state machine uses hardware shown in Fig-
ure 5. The state machine makes use of the augmented multi-
plier, a shifter, the addition components from a microcontroller



CLZ
S

M

FMA/
Approx

ALU

Shifter

R
es

ul
t

M
ux

A
M

ux
B

M
ux

Bypass
Register

Extra
Registers

(E0 and E1)

N
D

N
D

Immediate
Gen

Fig. 5. Diagram of the datapath used by the division state machine. Common
microcontroller components used for other instructions are in gray.

ALU, and a leading zero counter used to left-justify the
divisor. Small microcontrollers don’t always include leading
zero counters, but the circuit is comparatively small [17]. We
also use two extra registers, E0 and E1, that are assumed to
be added to the register file.

The Bypass and extra in the division state machine are
intended to simulate a 3-stage microcontroller with a 2-cycle
write-to-read latency, a bypass register covering that latency,
and two extra registers in the register file. One extra register
is often free in some microcontrollers that have a synthetic
zero register (eg RISC-V) [1]. This write-to-read latency
corresponds to a core with separate execute and write-back
stages, or a core with separate decode and execute stages
whose register values are loaded in the decode stage.

We also add a few extra capabilities to the multiplier:
• Adding 232 to the Booth-encoded operand on a signed

multiplication
• Negating a multiplication
• Right shifting the output by 1

All of these come at the cost of relatively few gates: the
first extra capability comes from enabling the most significant
partial product, which is not normally used for signed multipli-
cation. Negating a signed multiplication is enabled by XOR-
ing all of the NEG bits of the Booth code, negating each partial
product before they are summed. Right shifting the output
comes from adding an extra port to the result multiplexer:
going from 3 multiplier result terms to 4.

Finally, FMA capability was added to the bottom 32 bits
of the multiplier using a shadow register to avoid adding a
third operand port. This allows us to do remainder calculation
in one cycle, but is a comparatively expensive change, as it
requires an expansion from a 17-term adder tree to an 18-term
adder tree. Alternatively, two-cycle remainder calculation can
be done using multiplication and subtraction, which would add
one cycle to every non-trivial division. The FMA functionality
is not used for any other state machine step.

A. The State Machine Algorithm

State machine cycles are shown in Table V. The state
machine begins by using the leading zero counter and the

shifter to left-justify the denominator. A 5-bit register stores
the leading zero count for use later.

In the second cycle, we run division estimation to produce
an initial guess of the reciprocal.

x0 = A1/D(D)

To keep D ∗ x0 between 0 and 1, we underestimate in this
step, using the constants from the bottom row of Table II. This
allows us to only store the fractional part of xn and Dxn.

The state machine then uses a standard Newton-Raphson
iteration rule [14]:

xn+1 = xn(2−Dxn)

and uses the augmented multiplier to compute this update rule
in two cycles. In the first cycle, we compute Dxn and save
bits [62:31] to get a result in UQ0.32 fixed point. Since we
are working with strict underestimates for xn, we know that
Dxn < 1. In the next cycle, to compute xn(2 − Dxn), we
treat (Dxn) as signed since its leading digit is known to be 1,
negate it, and add 232. This is isomorphic to adding 2 to the
fixed point −Dxn.

After a precise estimate for 1/D is calculated, we multiply
x2 by N . We know that x2 is an underestimate within 1 ULP,
so we have either a correct quotient at this stage or we are
under by 1. We then shift and calculate an interim remainder
with an FMA operation.

After this, we check whether the interim remainder is over
D or under it. If it is over D, we correct the remainder and add
an 11th cycle to the state machine to correct the quotient. This
means that unlike most division algorithms, which compute a
quotient before a remainder, this algorithm computes a correct
remainder in 10 cycles, while a quotient may take 11 cycles
to compute.

By accepting that our calculation may be off by 1, we
avoid having to expand the datapath to recover precision losses
to truncation, and we avoid any need for rounding circuits.
However, expanding the datapath by adding 1 bit specifically
for division should allow the elimination of the correction
steps, causing the divider to terminate in 9 cycles at worst.

For signed division, most steps are the same as unsigned
division. However, we also need to add conditional negation
in the first and last steps of the quotient calculation, saving
the sign bit along with the shift amount. With the division
estimation function and error bounds we have, logical negation
is sufficient, allowing the re-use of the XOR gates that may
already be present on operand B for operations like subtrac-
tion. Steps 7 and 9–11 then use signed multiplication rather
than unsigned.

B. Early Termination

The state machine is designed to support early termination
for trivial cases and cases with a known upper bound on the
position of the output’s MSB, computed based on the leading
zero count of N and D:

MSB ≤ CLZ(D)− CLZ(N)



TABLE V
STATE MACHINE STEPS TO COMPUTE QUOTIENT AND REMAINDER

Inputs Operation Output
Cycle Operation Equation Form Operand A Operand B ALU/Shift Multiplier Source Register

1 Left-justify D D′ = D ≪ S D D A ≪ (S = CLZ(B)) Shift E0

2 Estimate 1/D X = A1/D(D′) BYP APPROX1/D(A) Mul E1

3 Get error (DX0) T = D′X/2 BYP E0 (AU × BU) ≫ 1 Mul
4 Refine X0 → X1 X = X(2− T ) BYP E1 (232 − AS)× BU Mul E1

5 Get error (DX1) T = D′X/2 BYP E0 (AU × BU) ≫ 1 Mul
6 Refine X1 → X2 X = X(2− T ) BYP E1 (232 − AS)× BU Mul
7 Calculate quotient Q′ = NX BYP N AU × BU Mul
8 Finish quotient Q = Q′ ≫ S BYP N A ≫ (32− S) B → M Shift Q

9 Calculate remainder R = N −DQ BYP D M− AU × BU Mul R

10 Check remainder R = R mod D BYP D (R ≥ D) ? R− D ALU R

11* Fix quotient Q = Q+ 1 Q Q+ 1 ALU Q

TABLE VI
EXECUTION LATENCY CASES FOR DIVIDER STATE MACHINE

Case Condition Total Cycles
Divide by zero S = 32 3
Power of 2 (D ≪ S) = 0.5 3
Known 0 result MSB < 0 4
8-bit precision 0 ≤ MSB < 8 6–7
16-bit precision 8 ≤ MSB < 16 8–9
Full precision 16 ≤ MSB 10–11

This can be computed in the second state machine cycle,
during the estimation stage, when both the ALU and the
operand B port are otherwise idle.

Early termination conditions are shown in Table VI. For
trivial cases, we can skip division estimation and only do steps
1 and 8. For cases with an 8-bit precision requirement, we skip
steps 3–6. For 16-bit precision, we skip steps 5–6.

To check these conditions, early termination involves extra
hardware to check for power of two divisions and compute
the position of the MSB, as well as adding three extra states
to the state machine to cover the trivial cases of division
by zero or a power of two, and known zero results. To
detect powers of two, the early termination logic needs extra
hardware to check whether the left-justified divisor was equal
to 0.5 (0x80000000), adding an extra circuit smaller than a
leading zero counter. A system that would rather have constant
11-cycle division can eschew these circuits for a small area
savings.

V. EVALUATION

A. Area and Frequency of Initial Approximation Circuit

The augmented multiplier was synthesized and run on a
Max 10 FPGA. The Max 10 was selected because its logic
fabric uses 4-input lookup tables, which makes it a good proxy
for ASIC synthesis of this circuit.

Synthesis results are summarized in Table VII, including
counts of logic elements (4-input LUTs), and an estimation of
maximum operating frequency from the Quartus Static Timing
Analysis program. A standard Wallace tree multiplier using

TABLE VII
FPGA SYNTHESIS COMPARISON OF CIRCUITS

Synthesized Circuit Logic Elements Synthesized fmax

Wallace Tree Multiplier 2,172 80 MHz
Multiplier Tree Only 2,175 76 MHz
Division Estimation Only 1,310 82 MHz
Multiply/Divide (One Cycle) 2,340 43 MHz
Multiply/Divide (Two Cycle) 2,345 71 MHz

3:2 compressors synthesizes in the same number of logic
cells as a multiplier using the hybrid tree architecture from
Figure 2. Both synthesize to similar maximum frequencies,
80 MHz for the Wallace tree and 76 MHz for our hybrid tree.
When synthesized alone, the division estimation circuits use
1,310 logic elements, about half the size of the multiplier, and
synthesize to a maximum frequency of 82 MHz.

When the division approximation circuits are added, the
combined multiplier expands from 2,175 logic elements to
2,340 logic elements, adding 8% more LEs to support division.
When the division circuits are added, the second path through
the multiplier significantly reduces the estimated maximum
frequency of the multiplier from 76 MHz to 43 MHz, a 43%
reduction in frequency. However, the large drop in fmax is at
least partly explained by pessimism in static timing analysis.

The two-cycle combined multiply/divide circuit synthesizes
to a similar size as the one-cycle circuit, but reaches an
analyzed fmax of 71 MHz, recovering the pessimism but
reflecting the delay of added logic gates and multiplexers in
the critical path of the multiplier.

For comparison with other systems that use iterative di-
vision, [5] uses a lookup table of 69 Kbits to cover both
reciprocal and floating-point square root calculations. [6] uses
a 1.3 Kbit lookup table for initial reciprocal approximation, but
requires 3 iterative refinement rounds to reach 24-bit precision,
so it may not have been capable of 32-bit precision without
an extra refinement round.



TABLE VIII
FPGA SYNTHESIS RESULTS OF THE DIVISION STATE MACHINE

Component Logic Elements

Division State Machine With Early Termination 3,260
Multiply/Divide Components 2,673

FMA with Division Estimation 2,491
Leading Zero Count 47
Power of 2 Detection 13
Control State Machine 56
Extra Registers 66

Common Components 587
Bypassing, Adder, and Datapath Multiplexers 357
Funnel Shifter 230

Comparison Baseline—Basic Datapath 2,759
Booth + Wallace Tree Multiplier 2,172
Common Components 587

Added Fast Division Logic vs. Basic Datapath 501

B. Analysis of Division State Machine

The state machine was also synthesized and run on a
Max 10 FPGA to evaluate its size and performance. The
synthesized state machine with early termination takes 3,260
logic cells, and runs at 42 MHz. A breakdown of the size
of circuit elements in the state machine is in Table VIII. The
multiplication and division components consume most of the
area of the circuit, but the vast majority of these components
come from the multiplier itself. The components responsible
for division account for 501 total additional logic cells when
compared against a baseline of a multiplier, a shifter, an ALU,
and a basic datapath, representing an extra 18% area in the
datapath to support fast division.

If the baseline machine also includes two extra registers
and some common bit manipulation operations, like popcount
(which handles power of 2 detection) and leading zero count,
the added cost for fast division is only 375 logic elements, or
a 14% increase in area.

VI. CONCLUSIONS

A microarchitecture for 32-bit integer division in small
devices using Newton-Raphson iteration has been presented.
This system uses a quantized fourth-order Remez approxima-
tion of 1/x instead of a lookup table, re-using the hardware
in the integer multiplier to compute the polynomial in either
one or two cycles depending on frequency requirements, at
a cost of an 8% area increase in the multiplier. Further, we
show a state machine that uses this approximation circuit to
compute 32-bit integer divisions 3–4× faster than a radix-2
division unit with a similar hardware footprint. The division
state machine completes remainder operations in 3–10 cycles,
and quotients in 2–11 cycles, with arbitrary 8-bit operations
terminating in 6–7 cycles and 16-bit operations terminating in
8–9 cycles.

When synthesized in an FPGA model, the division state
machine increases the area of a microcontroller datapath by
18% compared to a datapath with no division. The comparative
performance increase available for a modest increase in area

makes this circuit a viable alternative to methods like radix-2
non-restoring division in area-constrained applications.

ACKNOWLEDGEMENTS

The author would like to thank the anonymous reviewers
for their comments and suggestions.

REFERENCES

[1] A. Waterman and K. Asanovic, The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 2.2, RISC-V Foundation,
2017.

[2] MicroBlaze Processor Reference Guide (UG984), Online, Xilinx Inc.,
2021. [Online]. Available: https://www.xilinx.com/content/dam/xilinx/
support/documents/sw manuals/xilinx2021 2/ug984-vivado-
microblaze-ref.pdf

[3] E. Matthews and L. Shannon, “TAIGA: A new RISC-V soft-processor
framework enabling high performance cpu architectural features,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017, pp. 1–4.

[4] J. D. Bruguera, “Low-latency and high-bandwidth pipelined radix-64
division and square root unit,” in 2022 IEEE 29th Symposium on
Computer Arithmetic (ARITH), 2022, pp. 10–17.

[5] S. Oberman, “Floating point division and square root algorithms and
implementation in the AMD-K7™ microprocessor,” in Proceedings 14th
IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), 1999,
pp. 106–115.

[6] A. Naini, A. Dhablania, W. James, and D. Das Sarma, “1 GHz HAL
SPARC64® dual floating point unit with RAS features,” in Proceedings
15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, 2001,
pp. 173–183.

[7] A. Fog, “Instruction tables,” Online, 2022. [Online]. Available:
https://www.agner.org/optimize/instruction tables.pdf

[8] D. Das Sarma and D. Matula, “Faithful bipartite rom reciprocal tables,”
in Proceedings of the 12th Symposium on Computer Arithmetic, 1995,
pp. 17–28.

[9] K. Jun and E. E. Swartzlander, “Modified non-restoring division al-
gorithm with improved delay profile and error correction,” in 2012
Conference Record of the Forty Sixth Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), 2012, pp. 1460–1464.

[10] E. Matthews, A. Lu, Z. Fang, and L. Shannon, “Rethinking integer di-
vider design for fpga-based soft-processors,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 289–297.

[11] L. Li, M. Gautschi, and L. Benini, “Approximate DIV and SQRT
instructions for the RISC-V ISA: An efficiency vs. accuracy analysis,”
in 2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2017, pp. 1–8.

[12] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2019 (Re-
vision of IEEE 754-2008), pp. 1–84, 2019.

[13] D. Lemire, O. Kaser, and N. Kurz, “Faster remainder by direct com-
putation: Applications to compilers and software libraries,” Software:
Practice and Experience, vol. 49, no. 6, pp. 953–970, feb 2019.

[14] M. Flynn, “On division by functional iteration,” IEEE Transactions on
Computers, vol. C-19, no. 8, pp. 702–706, 1970.

[15] W. Fraser, “A survey of methods of computing minimax and near-
minimax polynomial approximations for functions of a single indepen-
dent variable,” J. ACM, vol. 12, no. 3, p. 295–314, jul 1965.

[16] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and B. Popa,
“Arithmetic core generation using bit heaps,” in 2013 23rd International
Conference on Field programmable Logic and Applications, 2013, pp.
1–8.

[17] J. Miao and S. Li, “A design for high speed leading-zero counter,” in
2017 IEEE International Symposium on Consumer Electronics (ISCE),
2017, pp. 22–23.


